

Metamaterial Based Vacuum Electron Devices for Next Generation Communication Systems

Jagadishwar R. Sirigiri
Bridge 12 Technologies, Framingham, MA
(In collaboration with Tufts University)
October 8, 2013

- Motivation
- Phase I Work
- Phase II Proposal
- Phase II Product Development
- Conclusions

Motivation

- Harness unique properties of Metamaterial structures for mode and frequency control in Vacuum Electron Devices (microwave tubes)
- Mode and frequency selectivity will lead to gains in spectral purity of the devices
- Develop a 5W Traveling Wave Tube (TWT) for high data rate communication application

TWT For Long Range E-Band Radios

- 60/70 GHz unlicensed and light-licensed bands for wireless backhaul applications
- Current radios use solid-state sources with ~0.3 W of power
- Develop a TWT with 16 X higher power and 10 GHz bandwidth to cover the full band

Advantages of a TWT Solution

- Generate the maximum allowed power ~5W with a single device
- ~ 16X higher power ⇒ ~ 4X longer range
- Long range direct link
 - 2 radios for a direct link instead of 8 for serial link
 - Cost savings ~ \$100,000
 - Lower latency
 - Lower maintenance costs

- Motivation
- Phase I Work
- Phase II Proposal
- Phase II Product Development
- Conclusions

Why Microwave Tubes?

Metamaterial (MTM) Structures for Vacuum Devices

- MTM consists of subwavelength structures with a strong electric or magnetic response
- The effective medium can have combinations of positive and negative permittivity and permeability
- Application of MTMs in Vacuum Electron Devices
 - Use high μ and ε to create slow waves in specific frequency band
 - Tuned dual frequency absorbers to suppress band edge oscillations in TWTs and other vacuum devices

MTM Based TWT Circuit Prototype

Cold Test Results

- Motivation
- Phase I Work
- Phase II Proposal
- Phase II Product Development
- Conclusions

70-80 GHz TWT for Point-to-Point High Speed Links

- Serpentine waveguide circuit
- 5 W with 10 GHz bandwidth
- Compact and low voltage (<5 kV)
- Dual frequency absorbing MTM to suppress band edge oscillations

Advantages of a TWT with MTM Filter

- Motivation
- Phase I Work
- Phase II Proposal
- Phase II Product Development
- Conclusions

Phase II Business Plan

- Partnering with Renaissance Electronics Corp,
 Harvard, MA to jointly develop a high power radio
 - REC has several radio products in the market
- Develop a prototype TWT and integrate with REC radio by the end of Phase II
 - Field demonstration system
 - Supply to early adopters
- Fully productized system within 2 years of the completion of Phase II
 - Bridge12's current setup can manufacture 20-30 units/yr

Integration with REC's E-Band Radio

- Motivation
- Phase I Work
- Phase II Proposal
- Phase II Product Development
- Conclusions

Conclusions

- We experimentally demonstrated the advantages of MTM structures in vacuum electron devices during Phase I
- In Phase II we will develop a 5W, 70-80 GHz TWT for Eband wireless radios
 - Partnering with Renaissance Electronics for joint product development
- Anticipate to have early prototypes in the field by the end of the Phase II program

Acknowledgements

This work was supported by the National Science Foundation through STTR grant IIP-1212327